skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sulangi, Miguel Antonio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Complete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α , for all momentakon the Fermi surface of every bandα. While there are a variety of techniques for determining$$|{\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha |$$ Δ k α , no general method existed to measure the signed values of$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α . Recently, however, a technique based on phase-resolved visualization of superconducting quasiparticle interference (QPI) patterns, centered on a single non-magnetic impurity atom, was introduced. In principle, energy-resolved and phase-resolved Fourier analysis of these images identifies wavevectors connecting allk-space regions where$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α has the same or opposite sign. But use of a single isolated impurity atom, from whose precise location the spatial phase of the scattering interference pattern must be measured, is technically difficult. Here we introduce a generalization of this approach for use with multiple impurity atoms, and demonstrate its validity by comparing the$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α it generates to the$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α determined from single-atom scattering in FeSe where s±energy-gap symmetry is established. Finally, to exemplify utility, we use the multi-atom technique on LiFeAs and find scattering interference between the hole-like and electron-like pockets as predicted for$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α of opposite sign. 
    more » « less